Quantitative Assessment of Acid-Base Properties of Chloride Doped Polypyrrole by Inverse Gas Chromatography

INTRODUCTION

Fowkes and many other workers ${ }^{1}$ have emphasized that acid-base interactions play a fundamental role in adhesion, solubility, and mixing of polymers. Several methods have been developed to study acid-base interactions of materials. ${ }^{1}$ While microcalorimetry is a direct method to determine heats of acid-base interactions, $\Delta H^{A B}$, other methods such as FTIR, NMR, and inverse gas chromatography (IGC) are nevertheless interesting and are currently applied to study such phenomena.

Fowkes ${ }^{1}$ suggested the use of Drago's famous four parameter equation ${ }^{2}$ to quantitatively assess acid-base properties of polymers:

$$
\begin{equation*}
-\Delta H^{A B}=E_{A} E_{B}+C_{A} C_{B} \tag{1}
\end{equation*}
$$

where E and C are the susceptibility of an acid (A) or a base (B) to undergo an electrostatic and a covalent interaction, respectively. Drago established E and C parameters for many acids and bases and thus could predict the heat of acid-base complexation for almost 1600 adducts with a precision of $0.4-0.8 \mathrm{~kJ} / \mathrm{mol}$. However E and C parameters were not available for complex materials. Over the last two decades, Fowkes ${ }^{1}$ has determined E and C parameters for polymers, silica, glass, and metal oxides using the measurements of the heats of adsorption of well characterized probes. Following these determinations, Fowkes predicted the acid-base interaction between complex materials (e.g., silica and PMMA).

Conducting polymers constitute a novel class of materials that have many potential uses. ${ }^{3}$ Among the conducting polymers offered to the materials scientist, polypyrrole (PPy) is interesting because of its electrical conductivity and good stability. It can be synthesized either by electrochemistry, by chemical oxidation or by chemical vapour deposition. PPy-based composites were also reported in the literature. ${ }^{3}$ Recently, in order to understand the adhesion properties of chloride doped polypyrrole (PPyCl), we have studied its dispersive and acid-base properties by IGC ${ }^{4}$ according to the method of Saint-Flour and Papirer. ${ }^{5}$ In this method, the acid-base interactions

[^0]© 1993 John Wiley \& Sons, Inc.
CCC 0021-8995/93/010183-04
are described by $I_{s p}$, the so-called specific interaction parameter of the probe molecule:
\[

$$
\begin{equation*}
I_{s p}=\Delta G_{A D S}-\Delta G^{d} \tag{2}
\end{equation*}
$$

\]

where $\Delta G_{A D S}$ and ΔG^{d} are the free enthalpy of adsorption and its dispersive contribution.

We ${ }^{4}$ showed that $I_{s p}$ values are positive for all acidic and basic probes. This indicates a specific interaction of PPyCl with both acids and bases, suggesting that PPyCl behaves amphoterically. This behaviour might explain the good mechanical properties of $\mathrm{PPyCl} /$ polyurethane composites. ${ }^{3}$ However, $I_{s p}$ values increased with temperature yielding a positive $\Delta H^{A B}$ that is contrary to the general knowledge that acid-base interactions are exothermic. Although the method of Saint-Flour and Papirer is interesting to rapidly evaluate acid-base properties of materials, it has limitations ${ }^{6}$ and remains at best semiquantitative.

We revise our IGC data ${ }^{4}$ in light of the recent work of Tiburcio and Manson. ${ }^{7}$ These authors have determined Drago's E_{A} and C_{A} parameters for untreated and basetreated glass beads by IGC. Their determination relied mainly on the following assumption:

$$
\begin{equation*}
\Delta H^{A B}=\Delta H_{A D S}-\Delta H^{d}=\Delta H_{A D S}-\Delta H_{v a p} \tag{3}
\end{equation*}
$$

where $\Delta H_{A D S}, \Delta H^{d}$, and $\Delta H_{v a p}$ are the heat of adsorption, the dispersive contribution to $\Delta H_{A D S}$, and the heat of vaporization of the injected probe, respectively. In addition, Tiburcio and Manson ${ }^{7}$ have modified Arnett's method ${ }^{8}$ to evaluate $\Delta H^{A B}$ from experimental values of $\Delta H_{A D S}$:

$$
\begin{equation*}
\Delta H^{A B}=\left(\Delta H_{\mathrm{exp}}-\Delta H^{d}\right)_{\text {probe }}-\left(\Delta H_{\exp }-\Delta H^{d}\right)_{\text {model }} \tag{4}
\end{equation*}
$$

where the model compound must be neutral and have a size comparable to that of the "polar" probe. Applying Turbicio and Manson's ${ }^{7}$ modifications to Arnett's ${ }^{8}$ equation, one determines $\Delta H^{A B}$ as follows:

$$
\begin{align*}
\Delta H^{A B}=\left(\Delta H_{A D S}-\Delta H_{v a p}\right)_{\text {probe }} & \\
& -\left(\Delta H_{A D S}-\Delta H_{v a p}\right)_{\text {model }} \tag{5}
\end{align*}
$$

Turbicio and Manson ${ }^{7}$ pointed out that ΔH^{d} in eq. (3) can be overestimated if a self-associated probe is used.

This is indeed the case for almost all polar probes. Fowkes ${ }^{1}$ has determined $\Delta H_{\text {vap }}^{d}$, the dispersive contribution to $\Delta H_{\text {vap }}$ for some usual solvents such as those used in the present work. We suggest, therefore, that eqs. (3) and (5) be modified as follows:

$$
\begin{equation*}
\Delta H^{A B}=\Delta H_{A D S}-\Delta H_{v a p}^{d} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta H^{A B}=\left(\Delta H_{A D S}-\Delta H^{d}\right)_{\text {probe }} & \\
& -\left(\Delta H_{A D S}-\Delta H_{\text {vap }}^{d}\right)_{\text {model }} \tag{7}
\end{align*}
$$

EXPERIMENTAL

The full details of the synthesis, surface analysis by Xray photoelectron spectroscopy and IGC measurements were reported elsewhere. ${ }^{4}$

RESULTS AND DISCUSSION

$\Delta H^{A B}$ values have been calculated by six methods.
Method 1: based on eq. (3) as in Tiburcio and Manson's ${ }^{7}$ work and abbreviated TM.

Methods 2 and 3: based on Arnett's ${ }^{8}$ method and modified by Turbicio and Manson ${ }^{7}$ as shown in eqs. (4) and (5). We call these methods ATM1 and ATM2, respectively, for reasons outlined below.

Method 4: based on eq. (6) as we suggested above. We abbreviate it PLC for Pigois-Landureau and Chehimi.

Methods 5 and 6: based on eq. (7) and abbreviated APLC1 and APLC2, respectively. These are modifications we have made to Arnett's ${ }^{8}$ method. APLC denotes Arnett, Pigois-Landureau, and Chehimi.

In ATM1 and APLC1, the model compound is neutral and of similar size to the probe as suggested by Turbicio and Manson. ${ }^{7}$ In methods ATM2 and APLC2, we suggest that the model (neutral) and the polar probes have similar values of $a\left(\gamma_{L}^{d}\right)^{1 / 2} . a$ and γ_{L}^{d} are the surface area and the dispersive contribution to the surface tension of the probe, respectively. Our choice of $a\left(\gamma_{L}^{d}\right)^{1 / 2}$ to compare the polar probe and the neutral model one, was inspired by the IGC method of Schultz et al. ${ }^{9}$ for estimating the dispersive component of the free enthalpy of adsorption. The surface area (a) and $a\left(\gamma_{L}^{d}\right)^{1 / 2}$ values are reported in Table I.

Estimation of $\Delta \boldsymbol{H}^{A B}$

$\Delta H_{A D S}, \Delta H_{\text {uap }}, \Delta H_{\text {vap }}^{d}$, and $\Delta H^{A B}$ are reported in Table II for n-pentane (C_{5}), n-hexane (C_{6}), carbon tetrachloride (CCl_{4}), chloroform $\left(\mathrm{CHCl}_{3}\right)$, tert-butyl alcohol ($t-\mathrm{BuOH}$), tetrahydrofuran (THF), and ethyl acetate (EtAc). One

Table I a and $a\left(Y_{L}^{d}\right)^{1 / 2}$ of the Molecular Probes

Probes	a^{a}	$a\left(Y_{L}^{d}\right)^{1 / 2 \mathrm{~b}}$
C_{5}	45.5	186
C_{6}	51.5	221
CCl_{4}	46	238
CHCl_{3}	44	224
$t-\mathrm{BuOH}$	-	-
THF	45	213
EtAc	48	213
a in $\AA^{2.9}$		
$\mathrm{~b} a\left(Y_{L}^{d}\right)^{1 / 2}$ in $\AA^{2} \mathrm{~mJ}^{1 / 2} \mathrm{~m}^{-1.9}$		

can note that the $\Delta H_{A D S}$ values are very close to $\Delta H_{\text {vap }}$ for C_{5} and C_{6} since these probes interact only by dispersive forces. However CCl_{4}, which is expected to behave in this way, has $\Delta H_{A D S}$ smaller than $\Delta H_{v a p}$ and $\Delta H_{\text {vap }}^{d}$. The polar probes have, on the contrary, $\Delta H_{A D S}$ exceeding their $\Delta H_{\text {vap }}$ by an amount in the range of 8.9-15.2 $\mathrm{kJ} / \mathrm{mol}$, and exceeding $\Delta H_{\text {uap }}^{d}$ by $14.1-22.7 \mathrm{~kJ} / \mathrm{mol}$. Thus, both the TM and PC approximations show that PPyCl is an amphoteric species, demonstrated elsewhere ${ }^{4}$ by means of the $I_{s p}$ values. The difference in $\Delta H^{A B}$ on going from TM to PC is greater for the most self-associated probes. $\Delta H^{A B}(\mathrm{PC})$ $-\Delta H^{A B}(\mathrm{TM})$ are $1,5.4$, and $7.5 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{CHCl}_{3}, \mathrm{EtAc}$, and THF, respectively. This trend parallels the percentages of self-association (\%SA) ${ }^{1}: 1.6 \%, 18 \%$, and 27%. This point has been qualitatively raised by Turbicio and Manson. ${ }^{7}$ On the other hand, Fowkes ${ }^{1}$ has advised IGC users: "In future IGC studies of the acid-base surface properties of . . . materials, it is recommended that the acidic or basic probes be chosen from those which have minimal acid-base self-association. . . ."

The determination of $\Delta H^{A B}$ using methods ATM1, ATM2, APLC1, and APLC2 show also that PPyCl interacts specifically with acids and bases. Both the ATM methods yield $\Delta H^{A B}$ values that are close to those obtained by the TM method. The same conclusion can be drawn from the PLC and APLC methods. However, APLC methods imply higher $\Delta H^{A B}$ values than ATM methods in the case of high \%SA. In the case of the poorly selfassociated CHCl_{3}, it is very interesting to note that the 12 determinations of $\Delta H^{A B}$ fall in the narrow range of $11.5-15.4 \mathrm{~kJ} / \mathrm{mol}$ compared to $13.6-22.7 \mathrm{~kJ} / \mathrm{mol}$ determined for THF. Now turning to the choice of the model compound, it is clear from Table II, that C_{5} and C_{6} yield similar $\Delta H^{A B}$ values for THF and EtAc. However, $\Delta H^{A B}$ can differ significantly in the case of CHCl_{3} and t - BuOH when CCl_{4} is chosen as the model probe instead of C_{5} or C_{6}. This is due to the fact that ($\Delta H_{A D S}-\Delta H_{\text {vap }}$) and ($\Delta H_{A D S}-\Delta H_{v a p}^{d}$) are negative and not negligible for CCl_{4}. This is unfortunate because CCl_{4} is the most appropriate neutral model for CHCl_{3} and $t-\mathrm{BuOH}$ because its size and shape are similar. The use of C_{6} as the model probe for CHCl_{3} in methods ATM2 and APLC2, leads to $\Delta H^{A B}$ matching those determined by the TM and PLC methods.

Table II Heats of Adsorption, Vaporization, and Acid-Base Interactions of the Molecular Probes

Probes	$\Delta H_{A D S}$	$\Delta H_{\text {uap }}$	$\Delta H_{v a p}^{d}$	$\Delta H^{A B}$					
				TM	ATM1	ATM2	PLC	APLC1	APLC2
C_{5}	$29.2^{\text {a }}$	27.6	27.6	1.6	0	0	1.6	0	
C_{6}	$32.5{ }^{\text {a }}$	31.9	31.9	0.6	0	0	0.6	0	0
CCl_{4}	30.6	$32.4{ }^{\text {b }}$	$31.9{ }^{\text {b }}$	-1.8	0	0	-1.3	0	0
CHCl_{3}	44.5	31.4	$30.4{ }^{\text {b }}$	13.1	$11.5{ }^{\text {c }}$	$12.5{ }^{\text {d }}$	14.1	$12.5{ }^{\text {c }}$	$13.5{ }^{\text {d }}$
				13.1	$14.9{ }^{\text {e }}$	$14.9{ }^{\text {e }}$	14.1	$15.4{ }^{\text {e }}$	$15.4{ }^{\text {e }}$
t - BuOH	52.5	43.6	-	8.9	$7.3^{\text {c }}$	-	-	-	-
				8.9	$10.7{ }^{\text {e }}$	-	-	-	
THF	46.0	$30.8{ }^{\text {b }}$	$23.3{ }^{\text {b }}$	15.2	$13.6{ }^{\text {c }}$	$14.6{ }^{\text {d }}$	22.7	$21.1^{\text {c }}$	$22.1{ }^{\text {d }}$
EtAc	49.1	34.7	$29.3{ }^{\text {b }}$	14.4	$12.8{ }^{\text {c }}$	$13.8{ }^{\text {d }}$	19.8	$18.2^{\text {c }}$	$19.2{ }^{\text {d }}$

All ΔH values are in $\mathrm{kJ} \mathrm{mol}^{-1}$.
$\Delta H_{\text {uap }}$: from the CRC Handbook ${ }^{10}$ except where mentioned.
$\Delta H_{\text {vap }}^{d}$: from Fowkes ${ }^{1}$ except for C_{5} and C_{6}.
${ }^{a}$ By extrapolation of $\Delta H_{A D S}$ using n-heptane, n-octane, and n-nonane. ${ }^{4}$
${ }^{6}$ From Fowkes. ${ }^{1}$
${ }^{c}$ Using C_{5} data.
${ }^{d}$ Using C_{6} data.
${ }^{e}$ Using CCl_{4} data.

Estimation of E and C Constants

The determination of E and C constants for PPyCl relies on the use of at least two probes of known E and C constants. As recommended by Drago, ${ }^{2}$ we chose acidic or basic probes of fairly different C / E ratios. Table III reports E, C, and C / E ratios for the polar probes: t - $\mathrm{BuOH}, \mathrm{CHCl}_{3}$, THF, and EtAc. Since both Lewis acids and bases adsorb specifically on PPyCl , we determined E_{B}, C_{B}, E_{A}, and C_{A} constants for this conducting polymer. The use of eq. (1) together with the $\Delta H^{A B}$ values from Table II and Drago's constants from Table III leads to the estimation of E_{B}, C_{B}, E_{A}, and C_{A} for PPyCl. These values are reported in Table IV.

E_{B} and C_{B} Values

We have determined three sets of E_{B} and C_{B} values for PPyCl . It is interesting to note that the three methods gave very similar values of E_{B}. However, we reject the last
set because of the negative value of C_{B}. A negative value of C_{B} means endothermic acid-base interaction. The first two sets lead to values of C_{B} that differ by one order of magnitude. Averaged values of the two first sets are: E_{B} $=1.09$ and $C_{B}=0.45$, with $C_{B} / E_{B}=0.41$. While C_{B} and C_{B} / E_{B} are very low, E_{B} matches the average value of 1.12 for all basic compounds studied by Drago. ${ }^{2}$ Therefore, PPyCl behaves as a hard Lewis base and prefers to bind to hard acids of high E_{A} such as CHCl_{3} or silica ($E_{A}=4.39$, $\left.C_{A}=1.14\right)\left(\right.$ Fowkes ${ }^{1}$).

E_{A} and C_{A} Values

Table IV reports six sets of E_{A} and C_{A} values. It is interesting to note that, since the TM approximation overestimates $\Delta H^{d}, E_{A}$ and C_{A} are lower for the three first sets. However the three TM methods yield similar E_{A} values and the same C_{A}. From TM, ATM1, and ATM2, the averaged values are: $E_{A}=3.26$ and $C_{A}=0.06$, with C_{A} / E_{A} $=0.018$.

The PLC, APLC1, and APLC2 methods yield higher E_{A} and C_{A} values (for the reasons outlined above) the

Table III Drago's Parameters and C/E Ratios of the Molecular Probes

Probes	C_{A} / E_{A}	E_{A}	C_{A}	C_{B} / E_{B}	E_{B}	C_{B}
t-BuOH	0.147	2.04				
CHCl		0.053	3.02	0.30		
THF				4.16	0.98	4.27
EtAc			1.7	0.98	1.74	

[^1]Table IV Drago's Parameters of PPyCl and Pyrrole

	Polypyrrole			
Methods	E_{A}	C_{A}	E_{B}	C_{B}
TM			1.03	0.08
ATM1 $^{\mathrm{a}}$			1.14	0.81
ATM1 $^{\text {b }}$			$\underline{0.94}$	$\underline{-0.61}$
Average $^{\mathrm{c}}$			1.09	0.45
TM	3.44	0.06		
ATM1	3.04	0.06		
ATM2	$\underline{3.29}$	$\underline{0.06}$		
Average	3.26	0.06		
PC	4.35	0.27		
APC1	3.97	0.27		
APC2	$\underline{4.2}$	$\underline{0.27}$		
Average	4.17	0.27		
		Pyrrole		
Drago	2.5	0.33		

E and C values are in ($\left.\mathrm{kcal} \mathrm{mol}^{-1}\right)^{1 / 2}$.
${ }^{\mathbf{a}}$ Method ATM1 using CCl_{4} as a model probe for CHCl_{3} and t-BuOH.
${ }^{b}$ Method ATM1 using C_{5} as a model probe for CHCl_{3} and t BuOH .
${ }^{c}$ Average value of TM and ATM1 $\left(\mathrm{CCl}_{4}\right)$.
averages of which are: $E_{A}=4.17$ and $C_{A}=0.27$; with $C_{A} /$ $E_{A}=0.06$.

The averages of the six values of E_{A} and C_{A} for PPyCl (3.72 and 0.33 , respectively) can be compared with those of pyrrole ($E_{A}=2.5, C_{A}=0.33$). We note that PPyCl has a higher E_{A} value whereas both C_{A} values are similar.

Both TM and PLC methods show that PPyCl behaves as a hard acid that prefers to bind to hard bases such as the oxygen-containing ones, e.g., poly (urethane).

CONCLUSION

A revision of our IGC work in the light of the recent developments of Turbicio and Manson ${ }^{7}$ enabled us to quantitatively characterize the surface acid-base properties of PPyCl . For the first time we have determined E and C parameters for this conducting polymer. Since PPyCl is an amphoteric material, we thus determined E_{A}, C_{A}, E_{B}, and C_{B} values. These values show explicitly that PPyCl is a hard amphoteric material that prefers to bind to hard acids and bases. This hardness is consistent with the chemical composition of PPyCl . However, since E_{A} is
higher than E_{B}, for formulating PPyCl -based composites, PPyCl will be best mixed with Lewis bases such as polyurethane or epoxy resins. Moreover, we have shown how the determination of $\Delta H^{A B}$, the acid-base contribution to the heat of adsorption ($\Delta H_{A D S}$) can be affected by the degree of self association of the polar probes and thus suggested to compare $\Delta H_{A D S}$ to $\Delta H_{\text {vap }}^{d}$, the dispersive contribution to the heat of vaporization, rather than the total heat of vaporization.

References

1. K. L. Mittal and H. R. Anderson, Jr., Eds., Acid-base Interactions: Relevance to Adhesion Science and Technology, VSP, Utrecht, 1991.
2. R. S. Drago, Structure and Bonding, Vol. 15, SpringerVerlag, Berlin, 1973, p. 73.
3. J. L. Bredas and R. Silbey, Eds., Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.
4. (a) M. M. Chehimi, E. Pigois-Landureau, and M. Delamar, J. Chim. Phys., 89, 1173 (1992). (b) M. M. Chehimi, E. Pigois-Landureau, M. Delamar, J. F. Watts, S. N. Jenkins, and E. M. Gibson, Bull. Soc. Chim. Fr., 129, 137 (1992).
5. C. Saint-Flour and E. Papirer, J. Coll. Interf. Sci., 91, 69 (1983).
6. J. B. Donnet, S. J. Park, and H. Balard, Chromatographia, 31, 434 (1991).
7. A. C. Turbicio and J. A. Manson, J. Appl. Polym. Sci., 42, 427 (1991).
8. E. M. Arnett, L. Joris, E. Mitchell, T. S. S. R. Murty, T. M. Gorrie, and P. v. R. Schleyer, J. Am. Chem. Soc., 92, 2365 (1970).
9. J. Schultz, L. Lavielle, and C. Martin, J. Adhesion, 23, 45 (1987).
10. R. C. Weast, Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, 1986.

Emmanuelle Pigois-Landureau Mohamed M. Chehimi*
Institut de Topologie et de Dynamique des Systèmes Associé au CNRS, Université Paris 7
1 rue Guy de la Brosse
75005 Paris, France

Received October 2, 1992
Accepted October 20, 1992

[^2]
[^0]: Journal of Applied Polymer Science, Vol. 49, 183-186 (1993)

[^1]: E_{A} and C_{A} values are in $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{1 / 2}$.

[^2]: * To whom correspondence should be addressed.

